1难度:如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【解析】对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2,所以一共有:种。2难度:某沿海城市管辖7个县,这7个县的位置如右图现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?a)为了便于分析,把地图上的7个县分别编号为A、B、C、D、E、F、G(如左下图)。为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图。那么,为了完成地图染色这件工作需要多少步呢?由于有7个区域,我们不妨按A、B、C、D、E、F、G的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务第1步:先染区域A,有5种颜色可供选择;第2步:再染区域B,由于B不能与A同色,所以区域B的染色方式有4种;第3步:染区域C,由于C不能与B、A同色,所以区域C的染色方式有3种;第4步:染区域D,由于D不能与C、A同色,所以区域D的染色方式有3种;第5步:染区域E,由于E不能与D、A同色,所以区域E的染色方式有3种;第6步:染区域F,由于F不能与E、A同色,所以区域F的染色方式有3种;第7步:染区域G,由于G不能与C、D同色,所以区域G的染色方式有3种 根据分步计数的乘法原理,共有种不同的染色方法